Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Med Genet ; 61(3): 250-261, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38050128

RESUMEN

BACKGROUND: Classic aniridia is a highly penetrant autosomal dominant disorder characterised by congenital absence of the iris, foveal hypoplasia, optic disc anomalies and progressive opacification of the cornea. >90% of cases of classic aniridia are caused by heterozygous, loss-of-function variants affecting the PAX6 locus. METHODS: Short-read whole genome sequencing was performed on 51 (39 affected) individuals from 37 different families who had screened negative for mutations in the PAX6 coding region. RESULTS: Likely causative mutations were identified in 22 out of 37 (59%) families. In 19 out of 22 families, the causative genomic changes have an interpretable deleterious impact on the PAX6 locus. Of these 19 families, 1 has a novel heterozygous PAX6 frameshift variant missed on previous screens, 4 have single nucleotide variants (SNVs) (one novel) affecting essential splice sites of PAX6 5' non-coding exons and 2 have deep intronic SNV (one novel) resulting in gain of a donor splice site. In 12 out of 19, the causative variants are large-scale structural variants; 5 have partial or whole gene deletions of PAX6, 3 have deletions encompassing critical PAX6 cis-regulatory elements, 2 have balanced inversions with disruptive breakpoints within the PAX6 locus and 2 have complex rearrangements disrupting PAX6. The remaining 3 of 22 families have deletions encompassing FOXC1 (a known cause of atypical aniridia). Seven of the causative variants occurred de novo and one cosegregated with familial aniridia. We were unable to establish inheritance status in the remaining probands. No plausibly causative SNVs were identified in PAX6 cis-regulatory elements. CONCLUSION: Whole genome sequencing proves to be an effective diagnostic test in most individuals with previously unexplained aniridia.


Asunto(s)
Aniridia , Anomalías del Ojo , Humanos , Factor de Transcripción PAX6/genética , Aniridia/genética , Mutación/genética , Anomalías del Ojo/genética , Exones , Proteínas de Homeodominio/genética , Proteínas del Ojo/genética , Linaje
2.
PLoS One ; 16(8): e0256181, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34388204

RESUMEN

Identifying causative variants in cis-regulatory elements (CRE) in neurodevelopmental disorders has proven challenging. We have used in vivo functional analyses to categorize rigorously filtered CRE variants in a clinical cohort that is plausibly enriched for causative CRE mutations: 48 unrelated males with a family history consistent with X-linked intellectual disability (XLID) in whom no detectable cause could be identified in the coding regions of the X chromosome (chrX). Targeted sequencing of all chrX CRE identified six rare variants in five affected individuals that altered conserved bases in CRE targeting known XLID genes and segregated appropriately in families. Two of these variants, FMR1CRE and TENM1CRE, showed consistent site- and stage-specific differences of enhancer function in the developing zebrafish brain using dual-color fluorescent reporter assay. Mouse models were created for both variants. In male mice Fmr1CRE induced alterations in neurodevelopmental Fmr1 expression, olfactory behavior and neurophysiological indicators of FMRP function. The absence of another likely causative variant on whole genome sequencing further supported FMR1CRE as the likely basis of the XLID in this family. Tenm1CRE mice showed no phenotypic anomalies. Following the release of gnomAD 2.1, reanalysis showed that TENM1CRE exceeded the maximum plausible population frequency of a XLID causative allele. Assigning causative status to any ultra-rare CRE variant remains problematic and requires disease-relevant in vivo functional data from multiple sources. The sequential and bespoke nature of such analyses renders them time-consuming and challenging to scale for routine clinical use.


Asunto(s)
Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Genes Ligados a X , Genoma Humano , Discapacidad Intelectual Ligada al Cromosoma X/genética , Proteínas del Tejido Nervioso/genética , Elementos Reguladores de la Transcripción , Tenascina/genética , Animales , Animales Modificados Genéticamente , Encéfalo/metabolismo , Encéfalo/patología , Mapeo Cromosómico , Estudios de Cohortes , Modelos Animales de Enfermedad , Embrión no Mamífero , Exoma , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Frecuencia de los Genes , Genotipo , Humanos , Masculino , Discapacidad Intelectual Ligada al Cromosoma X/metabolismo , Discapacidad Intelectual Ligada al Cromosoma X/patología , Ratones , Proteínas del Tejido Nervioso/deficiencia , Linaje , Fenotipo , Tenascina/deficiencia , Pez Cebra
3.
PLoS Genet ; 15(11): e1008480, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31765389

RESUMEN

Human population isolates provide a snapshot of the impact of historical demographic processes on population genetics. Such data facilitate studies of the functional impact of rare sequence variants on biomedical phenotypes, as strong genetic drift can result in higher frequencies of variants that are otherwise rare. We present the first whole genome sequencing (WGS) study of the VIKING cohort, a representative collection of samples from the isolated Shetland population in northern Scotland, and explore how its genetic characteristics compare to a mainland Scottish population. Our analyses reveal the strong contributions played by the founder effect and genetic drift in shaping genomic variation in the VIKING cohort. About one tenth of all high-quality variants discovered are unique to the VIKING cohort or are seen at frequencies at least ten fold higher than in more cosmopolitan control populations. Multiple lines of evidence also suggest relaxation of purifying selection during the evolutionary history of the Shetland isolate. We demonstrate enrichment of ultra-rare VIKING variants in exonic regions and for the first time we also show that ultra-rare variants are enriched within regulatory regions, particularly promoters, suggesting that gene expression patterns may diverge relatively rapidly in human isolates.


Asunto(s)
Demografía , Variación Genética/genética , Genética de Población , Secuencias Reguladoras de Ácidos Nucleicos/genética , Regiones no Traducidas 5'/genética , Alelos , Cromatina/genética , Europa (Continente) , Exones/genética , Efecto Fundador , Flujo Genético , Estudio de Asociación del Genoma Completo , Genómica , Humanos , Fenotipo , Polimorfismo de Nucleótido Simple/genética , Regiones Promotoras Genéticas/genética , Escocia , Secuenciación Completa del Genoma
4.
Am J Hum Genet ; 105(5): 933-946, 2019 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-31607427

RESUMEN

Trio-based whole-exome sequence (WES) data have established confident genetic diagnoses in ∼40% of previously undiagnosed individuals recruited to the Deciphering Developmental Disorders (DDD) study. Here we aim to use the breadth of phenotypic information recorded in DDD to augment diagnosis and disease variant discovery in probands. Median Euclidean distances (mEuD) were employed as a simple measure of similarity of quantitative phenotypic data within sets of ≥10 individuals with plausibly causative de novo mutations (DNM) in 28 different developmental disorder genes. 13/28 (46.4%) showed significant similarity for growth or developmental milestone metrics, 10/28 (35.7%) showed similarity in HPO term usage, and 12/28 (43%) showed no phenotypic similarity. Pairwise comparisons of individuals with high-impact inherited variants to the 32 individuals with causative DNM in ANKRD11 using only growth z-scores highlighted 5 likely causative inherited variants and two unrecognized DNM resulting in an 18% diagnostic uplift for this gene. Using an independent approach, naive Bayes classification of growth and developmental data produced reasonably discriminative models for the 24 DNM genes with sufficiently complete data. An unsupervised naive Bayes classification of 6,993 probands with WES data and sufficient phenotypic information defined 23 in silico syndromes (ISSs) and was used to test a "phenotype first" approach to the discovery of causative genotypes using WES variants strictly filtered on allele frequency, mutation consequence, and evidence of constraint in humans. This highlighted heterozygous de novo nonsynonymous variants in SPTBN2 as causative in three DDD probands.


Asunto(s)
Discapacidades del Desarrollo/genética , Teorema de Bayes , Niño , Enanismo/genética , Exoma/genética , Femenino , Frecuencia de los Genes/genética , Predisposición Genética a la Enfermedad/genética , Heterocigoto , Humanos , Masculino , Mutación/genética , Fenotipo , Proteínas Represoras/genética , Espectrina/genética , Secuenciación del Exoma
5.
Sci Rep ; 9(1): 10964, 2019 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-31358886

RESUMEN

The Viking Health Study Shetland is a population-based research cohort of 2,122 volunteer participants with ancestry from the Shetland Isles in northern Scotland. The high kinship and detailed phenotype data support a range of approaches for associating rare genetic variants, enriched in this isolate population, with quantitative traits and diseases. As an exemplar, the c.1750G > A; p.Gly584Ser variant within the coding sequence of the KCNH2 gene implicated in Long QT Syndrome (LQTS), which occurred once in 500 whole genome sequences from this population, was investigated. Targeted sequencing of the KCNH2 gene in family members of the initial participant confirmed the presence of the sequence variant and identified two further members of the same family pedigree who shared the variant. Investigation of these three related participants for whom single nucleotide polymorphism (SNP) array genotypes were available allowed a unique shared haplotype of 1.22 Mb to be defined around this locus. Searching across the full cohort for this haplotype uncovered two additional apparently unrelated individuals with no known genealogical connection to the original kindred. All five participants with the defined haplotype were shown to share the rare variant by targeted Sanger sequencing. If this result were verified in a healthcare setting, it would be considered clinically actionable, and has been actioned in relatives ascertained independently through clinical presentation. The General Practitioners of four study participants with the rare variant were alerted to the research findings by letters outlining the phenotype (prolonged electrocardiographic QTc interval). A lack of detectable haplotype sharing between c.1750G > A; p.Gly584Ser chromosomes from previously reported individuals from Finland and those in this study from Shetland suggests that this mutation has arisen more than once in human history. This study showcases the potential value of isolate population-based research resources for genomic medicine. It also illustrates some challenges around communication of actionable findings in research participants in this context.


Asunto(s)
Canal de Potasio ERG1/genética , Haplotipos , Síndrome de QT Prolongado/genética , Polimorfismo de Nucleótido Simple , Anciano , Estudios de Cohortes , Electrocardiografía , Femenino , Humanos , Síndrome de QT Prolongado/diagnóstico , Masculino , Persona de Mediana Edad , Linaje , Escocia
6.
Nat Commun ; 10(1): 2373, 2019 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-31147538

RESUMEN

We aimed to develop an efficient, flexible and scalable approach to diagnostic genome-wide sequence analysis of genetically heterogeneous clinical presentations. Here we present G2P ( www.ebi.ac.uk/gene2phenotype ) as an online system to establish, curate and distribute datasets for diagnostic variant filtering via association of allelic requirement and mutational consequence at a defined locus with phenotypic terms, confidence level and evidence links. An extension to Ensembl Variant Effect Predictor (VEP), VEP-G2P was used to filter both disease-associated and control whole exome sequence (WES) with Developmental Disorders G2P (G2PDD; 2044 entries). VEP-G2PDD shows a sensitivity/precision of 97.3%/33% for de novo and 81.6%/22.7% for inherited pathogenic genotypes respectively. Many of the missing genotypes are likely false-positive pathogenic assignments. The expected number and discriminative features of background genotypes are defined using control WES. Using only human genetic data VEP-G2P performs well compared to other freely-available diagnostic systems and future phenotypic matching capabilities should further enhance performance.


Asunto(s)
Discapacidades del Desarrollo/genética , Secuenciación del Exoma , Pruebas Genéticas , Genoma Humano , Alelos , Genotipo , Humanos , Técnicas de Diagnóstico Molecular , Mutación , Fenotipo , Análisis de Secuencia de ADN , Secuenciación Completa del Genoma
7.
PLoS Genet ; 15(3): e1007605, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30856165

RESUMEN

Typical Martsolf syndrome is characterized by congenital cataracts, postnatal microcephaly, developmental delay, hypotonia, short stature and biallelic hypomorphic mutations in either RAB3GAP1 or RAB3GAP2. Genetic analysis of 85 unrelated "mutation negative" probands with Martsolf or Martsolf-like syndromes identified two individuals with different homozygous null mutations in ITPA, the gene encoding inosine triphosphate pyrophosphatase (ITPase). Both probands were from multiplex families with a consistent, lethal and highly distinctive disorder; a Martsolf-like syndrome with infantile-onset dilated cardiomyopathy. Severe ITPase-deficiency has been previously reported with infantile epileptic encephalopathy (MIM 616647). ITPase acts to prevent incorporation of inosine bases (rI/dI) into RNA and DNA. In Itpa-null cells dI was undetectable in genomic DNA. dI could be identified at a low level in mtDNA without detectable mitochondrial genome instability, mtDNA depletion or biochemical dysfunction of the mitochondria. rI accumulation was detectable in proband-derived lymphoblastoid RNA. In Itpa-null mouse embryos rI was detectable in the brain and kidney with the highest level seen in the embryonic heart (rI at 1 in 385 bases). Transcriptome and proteome analysis in mutant cells revealed no major differences with controls. The rate of transcription and the total amount of cellular RNA also appeared normal. rI accumulation in RNA-and by implication rI production-correlates with the severity of organ dysfunction in ITPase deficiency but the basis of the cellulopathy remains cryptic. While we cannot exclude cumulative minor effects, there are no major anomalies in the production, processing, stability and/or translation of mRNA.


Asunto(s)
Cardiomiopatía Dilatada/enzimología , Cardiomiopatía Dilatada/genética , Catarata/enzimología , Catarata/genética , Hipogonadismo/enzimología , Hipogonadismo/genética , Discapacidad Intelectual/enzimología , Discapacidad Intelectual/genética , Errores Innatos del Metabolismo/enzimología , Errores Innatos del Metabolismo/genética , Pirofosfatasas/deficiencia , Animales , Secuencia de Bases , Preescolar , Análisis Mutacional de ADN , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Femenino , Homocigoto , Humanos , Inosina/metabolismo , Masculino , Ratones , Ratones Noqueados , Células Madre Embrionarias de Ratones/enzimología , Mutación , Linaje , Pirofosfatasas/genética , ARN/genética , ARN/metabolismo , Secuenciación del Exoma
9.
Hum Mutat ; 38(8): 942-946, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28493397

RESUMEN

Ocular coloboma (OC) is a defect in optic fissure closure and is a common cause of severe congenital visual impairment. Bilateral OC is primarily genetically determined and shows marked locus heterogeneity. Whole-exome sequencing (WES) was used to analyze 12 trios (child affected with OC and both unaffected parents). This identified de novo mutations in 10 different genes in eight probands. Three of these genes encoded proteins associated with actin cytoskeleton dynamics: ACTG1, TWF1, and LCP1. Proband-only WES identified a second unrelated individual with isolated OC carrying the same ACTG1 allele, encoding p.(Pro70Leu). Both individuals have normal neurodevelopment with no extra-ocular signs of Baraitser-Winter syndrome. We found this mutant protein to be incapable of incorporation into F-actin. The LCP1 and TWF1 variants each resulted in only minor disturbance of actin interactions, and no further plausibly causative variants were identified in these genes on resequencing 380 unrelated individuals with OC.


Asunto(s)
Actinas/genética , Coloboma/etiología , Coloboma/genética , Animales , Femenino , Humanos , Masculino , Ratones , Proteínas de Microfilamentos/genética , Mutación/genética , Proteínas Tirosina Quinasas/genética
10.
Genes Dev ; 30(19): 2158-2172, 2016 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-27737959

RESUMEN

Compaction of chromosomes is essential for accurate segregation of the genome during mitosis. In vertebrates, two condensin complexes ensure timely chromosome condensation, sister chromatid disentanglement, and maintenance of mitotic chromosome structure. Here, we report that biallelic mutations in NCAPD2, NCAPH, or NCAPD3, encoding subunits of these complexes, cause microcephaly. In addition, hypomorphic Ncaph2 mice have significantly reduced brain size, with frequent anaphase chromatin bridge formation observed in apical neural progenitors during neurogenesis. Such DNA bridges also arise in condensin-deficient patient cells, where they are the consequence of failed sister chromatid disentanglement during chromosome compaction. This results in chromosome segregation errors, leading to micronucleus formation and increased aneuploidy in daughter cells. These findings establish "condensinopathies" as microcephalic disorders, with decatenation failure as an additional disease mechanism for microcephaly, implicating mitotic chromosome condensation as a key process ensuring mammalian cerebral cortex size.


Asunto(s)
Adenosina Trifosfatasas/genética , Proteínas de Unión al ADN/genética , Microcefalia/genética , Mitosis/genética , Complejos Multiproteicos/genética , Mutación/genética , Aneuploidia , Animales , Catenanos/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Inestabilidad Cromosómica/genética , Segregación Cromosómica/genética , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Micronúcleos con Defecto Cromosómico , Neuronas/patología , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Células Madre
11.
Nat Genet ; 48(1): 36-43, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26595769

RESUMEN

DNA lesions encountered by replicative polymerases threaten genome stability and cell cycle progression. Here we report the identification of mutations in TRAIP, encoding an E3 RING ubiquitin ligase, in patients with microcephalic primordial dwarfism. We establish that TRAIP relocalizes to sites of DNA damage, where it is required for optimal phosphorylation of H2AX and RPA2 during S-phase in response to ultraviolet (UV) irradiation, as well as fork progression through UV-induced DNA lesions. TRAIP is necessary for efficient cell cycle progression and mutations in TRAIP therefore limit cellular proliferation, providing a potential mechanism for microcephaly and dwarfism phenotypes. Human genetics thus identifies TRAIP as a component of the DNA damage response to replication-blocking DNA lesions.


Asunto(s)
Daño del ADN , Enanismo/genética , Mutación , Péptidos y Proteínas Asociados a Receptores de Factores de Necrosis Tumoral/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Secuencia de Aminoácidos , Proliferación Celular/genética , Preescolar , Daño del ADN/efectos de la radiación , Facies , Histonas/genética , Histonas/metabolismo , Humanos , Microcefalia/genética , Datos de Secuencia Molecular , Fosforilación , Proteína de Replicación A/metabolismo , Fase S/efectos de la radiación , Péptidos y Proteínas Asociados a Receptores de Factores de Necrosis Tumoral/genética , Ubiquitina-Proteína Ligasas/genética , Rayos Ultravioleta
12.
Genome Med ; 6(11): 70, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25414729

RESUMEN

BACKGROUND: Multidrug-resistant Acinetobacter baumannii commonly causes hospital outbreaks. However, within an outbreak, it can be difficult to identify the routes of cross-infection rapidly and accurately enough to inform infection control. Here, we describe a protracted hospital outbreak of multidrug-resistant A. baumannii, in which whole-genome sequencing (WGS) was used to obtain a high-resolution view of the relationships between isolates. METHODS: To delineate and investigate the outbreak, we attempted to genome-sequence 114 isolates that had been assigned to the A. baumannii complex by the Vitek2 system and obtained informative draft genome sequences from 102 of them. Genomes were mapped against an outbreak reference sequence to identify single nucleotide variants (SNVs). RESULTS: We found that the pulsotype 27 outbreak strain was distinct from all other genome-sequenced strains. Seventy-four isolates from 49 patients could be assigned to the pulsotype 27 outbreak on the basis of genomic similarity, while WGS allowed 18 isolates to be ruled out of the outbreak. Among the pulsotype 27 outbreak isolates, we identified 31 SNVs and seven major genotypic clusters. In two patients, we documented within-host diversity, including mixtures of unrelated strains and within-strain clouds of SNV diversity. By combining WGS and epidemiological data, we reconstructed potential transmission events that linked all but 10 of the patients and confirmed links between clinical and environmental isolates. Identification of a contaminated bed and a burns theatre as sources of transmission led to enhanced environmental decontamination procedures. CONCLUSIONS: WGS is now poised to make an impact on hospital infection prevention and control, delivering cost-effective identification of routes of infection within a clinically relevant timeframe and allowing infection control teams to track, and even prevent, the spread of drug-resistant hospital pathogens.

13.
PLoS Genet ; 10(9): e1004577, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25232951

RESUMEN

Cilia are highly conserved microtubule-based structures that perform a variety of sensory and motility functions during development and adult homeostasis. In humans, defects specifically affecting motile cilia lead to chronic airway infections, infertility and laterality defects in the genetically heterogeneous disorder Primary Ciliary Dyskinesia (PCD). Using the comparatively simple Drosophila system, in which mechanosensory neurons possess modified motile cilia, we employed a recently elucidated cilia transcriptional RFX-FOX code to identify novel PCD candidate genes. Here, we report characterization of CG31320/HEATR2, which plays a conserved critical role in forming the axonemal dynein arms required for ciliary motility in both flies and humans. Inner and outer arm dyneins are absent from axonemes of CG31320 mutant flies and from PCD individuals with a novel splice-acceptor HEATR2 mutation. Functional conservation of closely arranged RFX-FOX binding sites upstream of HEATR2 orthologues may drive higher cytoplasmic expression of HEATR2 during early motile ciliogenesis. Immunoprecipitation reveals HEATR2 interacts with DNAI2, but not HSP70 or HSP90, distinguishing it from the client/chaperone functions described for other cytoplasmic proteins required for dynein arm assembly such as DNAAF1-4. These data implicate CG31320/HEATR2 in a growing intracellular pre-assembly and transport network that is necessary to deliver functional dynein machinery to the ciliary compartment for integration into the motile axoneme.


Asunto(s)
Cilios/metabolismo , Cilios/fisiología , Proteínas/metabolismo , Animales , Dineínas Axonemales , Axonema/genética , Axonema/metabolismo , Sitios de Unión/genética , Línea Celular , Preescolar , Cilios/genética , Trastornos de la Motilidad Ciliar/genética , Trastornos de la Motilidad Ciliar/metabolismo , Drosophila/genética , Drosophila/metabolismo , Dineínas/genética , Dineínas/metabolismo , Femenino , Humanos , Síndrome de Kartagener/genética , Síndrome de Kartagener/metabolismo , Masculino , Mutación/genética , Linaje , Fenotipo , Proteínas/genética , Transcripción Genética/genética
14.
BMC Microbiol ; 12: 302, 2012 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-23259572

RESUMEN

BACKGROUND: Microbial taxonomy remains a conservative discipline, relying on phenotypic information derived from growth in pure culture and techniques that are time-consuming and difficult to standardize, particularly when compared to the ease of modern high-throughput genome sequencing. Here, drawing on the genus Acinetobacter as a test case, we examine whether bacterial taxonomy could abandon phenotypic approaches and DNA-DNA hybridization and, instead, rely exclusively on analyses of genome sequence data. RESULTS: In pursuit of this goal, we generated a set of thirteen new draft genome sequences, representing ten species, combined them with other publically available genome sequences and analyzed these 38 strains belonging to the genus. We found that analyses based on 16S rRNA gene sequences were not capable of delineating accepted species. However, a core genome phylogenetic tree proved consistent with the currently accepted taxonomy of the genus, while also identifying three misclassifications of strains in collections or databases. Among rapid distance-based methods, we found average-nucleotide identity (ANI) analyses delivered results consistent with traditional and phylogenetic classifications, whereas gene content based approaches appear to be too strongly influenced by the effects of horizontal gene transfer to agree with previously accepted species. CONCLUSION: We believe a combination of core genome phylogenetic analysis and ANI provides an appropriate method for bacterial species delineation, whereby bacterial species are defined as monophyletic groups of isolates with genomes that exhibit at least 95% pair-wise ANI. The proposed method is backwards compatible; it provides a scalable and uniform approach that works for both culturable and non-culturable species; is faster and cheaper than traditional taxonomic methods; is easily replicable and transferable among research institutions; and lastly, falls in line with Darwin's vision of classification becoming, as far as is possible, genealogical.


Asunto(s)
Acinetobacter/clasificación , Acinetobacter/genética , Clasificación/métodos , Genómica/métodos , Filogenia , Acinetobacter/fisiología , Técnicas de Tipificación Bacteriana , Genes Bacterianos , Genes de ARNr , Genoma Bacteriano , Hibridación de Ácido Nucleico , ARN Ribosómico 16S/genética
15.
Nat Rev Microbiol ; 10(9): 599-606, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22864262

RESUMEN

Here, we take a snapshot of the high-throughput sequencing platforms, together with the relevant analytical tools, that are available to microbiologists in 2012, and evaluate the strengths and weaknesses of these platforms in obtaining bacterial genome sequences. We also scan the horizon of future possibilities, speculating on how the availability of sequencing that is 'too cheap to metre' might change the face of microbiology forever.


Asunto(s)
ADN Bacteriano/química , ADN Bacteriano/genética , Genoma Bacteriano , Ensayos Analíticos de Alto Rendimiento , Genética Microbiana/tendencias , Biología Molecular/tendencias
16.
J Bacteriol ; 194(2): 549, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22207751

RESUMEN

Mycobacterium abscessus is a rapidly growing environmental mycobacterium commonly found in soil and water which is often also associated with infections in humans, particularly of the lung. We report herein the draft genome sequence of M. abscessus strain 47J26.


Asunto(s)
Enfermedades Transmisibles Emergentes/microbiología , Genoma Bacteriano , Infecciones por Mycobacterium/microbiología , Mycobacterium/clasificación , Mycobacterium/genética , Humanos , Datos de Secuencia Molecular
17.
PLoS One ; 6(12): e28388, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22174796

RESUMEN

Among proteins, orthologs are defined as those that are derived by vertical descent from a single progenitor in the last common ancestor of their host organisms. Our goal is to compute a complete set of protein orthologs derived from all currently available complete bacterial and archaeal genomes. Traditional approaches typically rely on all-against-all BLAST searching which is prohibitively expensive in terms of hardware requirements or computational time (requiring an estimated 18 months or more on a typical server). Here, we present xBASE-Orth, a system for ongoing ortholog annotation, which applies a "divide and conquer" approach and adopts a pragmatic scheme that trades accuracy for speed. Starting at species level, xBASE-Orth carefully constructs and uses pan-genomes as proxies for the full collections of coding sequences at each level as it progressively climbs the taxonomic tree using the previously computed data. This leads to a significant decrease in the number of alignments that need to be performed, which translates into faster computation, making ortholog computation possible on a global scale. Using xBASE-Orth, we analyzed an NCBI collection of 1,288 bacterial and 94 archaeal complete genomes with more than 4 million coding sequences in 5 weeks and predicted more than 700 million ortholog pairs, clustered in 175,531 orthologous groups. We have also identified sets of highly conserved bacterial and archaeal orthologs and in so doing have highlighted anomalies in genome annotation and in the proposed composition of the minimal bacterial genome. In summary, our approach allows for scalable and efficient computation of the bacterial and archaeal ortholog annotations. In addition, due to its hierarchical nature, it is suitable for incorporating novel complete genomes and alternative genome annotations. The computed ortholog data and a continuously evolving set of applications based on it are integrated in the xBASE database, available at http://www.xbase.ac.uk/.


Asunto(s)
Archaea/genética , Bacterias/genética , Homología de Secuencia de Aminoácido , Genoma Arqueal/genética , Genoma Bacteriano/genética , Sistemas de Lectura Abierta/genética , Alineación de Secuencia , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA